If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x+93=0
a = 1; b = -20; c = +93;
Δ = b2-4ac
Δ = -202-4·1·93
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{7}}{2*1}=\frac{20-2\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{7}}{2*1}=\frac{20+2\sqrt{7}}{2} $
| x^2+18x=-75 | | x-50=-55 | | 7j=-42 | | -3.2+5a=90 | | 5x-60+2x=x | | -6(2x+4)=24 | | -5(2x-5)=85 | | 22/6×13/6=a | | 11x+3=-17+6x | | 18=n-6 | | 9x+18=44 | | 73=3-5(1-3x) | | 4(3x+5)=63 | | a=(21/3)(11/2) | | 3(3x-5)-4x+7=12 | | 11+6x−14=3/5(15x−5) | | 6(6x-8)-5x+7=83 | | a=21/3-11/2 | | 4(3x-4)=-76 | | b+171/8=4/7 | | 4=p+5+4 | | 10x+6-4x=4(x+2) | | -0,82-(3,18+0,06p)=3,94p-2p | | 6b+3=-3b=12 | | 54=6+4x | | 5x.2x=10x | | x-(-150)=-120 | | 48x2-13x-1=0 | | 10+2x=0+4x | | 6x-2x=-8+11 | | 21/3×11/2=a | | x+x+x+4=10 |